Advertisement

Safety and feasibility of volumetric laser endomicroscopy in patients with Barrett’s esophagus (with videos)

      Background

      Volumetric laser endomicroscopy (VLE) produces high-resolution, cross-sectional surface, and subsurface images for detecting neoplasia, targeting biopsies, and guiding real-time treatment.

      Objective

      To evaluate the safety and feasibility of the Nvision VLE system.

      Design

      Prospective, multicenter study.

      Setting

      Tertiary-care medical centers.

      Patients

      One hundred patients with suspected Barrett’s esophagus, including 52 patients with prior endotherapy.

      Interventions

      The first-generation Nvision VLE Imaging System, a balloon-centered, rotating optical probe provided images of the mucosa and submucosa through a 6-cm segment length and 360° scan of the distal esophagus.

      Main Outcome Measurements

      Acquisition of a complete, 6-cm scan from the distal esophagus, demographic and procedural data, and final histologic diagnosis.

      Results

      VLE imaging was successfully performed in 87 cases. After VLE imaging, biopsy specimens were obtained in 77 patients and mucosal resection was performed in 20 patients. The final pathologic diagnoses of the patients studied were adenocarcinoma (4 patients), high-grade dysplasia (10 patients), low-grade dysplasia (11 patients), indefinite (5 patients), intestinal metaplasia (29 patients), and normal squamous cells (18 patients). VLE was not completed in 13 of 100 (13%) because of optical probe and console issues. There were 2 minor adverse events (mucosal lacerations not requiring therapy).

      Limitations

      This was a feasibility study with a first-generation device. There was no direct histopathologic correlation with the VLE images or any comparative analysis with white-light endoscopy or narrow-band imaging findings.

      Conclusion

      VLE is a safe procedure for patients with suspected or confirmed Barrett’s esophagus. Real-time VLE images enabled visualization of the mucosa and submucosa in 87% of cases. Further studies are needed to evaluate the in vivo diagnostic accuracy and clinical utility of VLE.

      Abbreviations:

      BE (Barrett's esophagus), CLE (confocal laser endomicroscopy), OCT (optical coherence tomography), OFDI (optical frequency domain imaging), VLE (volumetric laser endomicroscopy)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Gastrointestinal Endoscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Rastogi A.
        • Puli S.
        • El-Serag H.B.
        • et al.
        Incidence of esophageal adenocarcinoma in patients with Barrett's esophagus and high-grade dysplasia: a meta-analysis.
        Gastrointest Endosc. 2008; 67: 394-398
        • Voltaggio L.
        • Montgomery E.A.
        • Lam-Himlin D.
        A clinical and histopathologic focus on Barrett esophagus and Barrett-related dysplasia.
        Arch Pathol Lab Med. 2011; 135: 1249-1260
        • Coron E.
        • Robaszkiewicz M.
        • Chatelain D.
        • et al.
        Advanced precancerous lesions in the lower oesophageal mucosa: high-grade dysplasia and intramucosal carcinoma in Barrett's oesophagus.
        Best Pract Res Clin Gastroenterol. 2013; 27: 187-204
        • Qumseya B.J.
        • Wang H.
        • Badie N.
        • et al.
        Advanced imaging technologies increase detection of dysplasia and neoplasia in patients with Barrett's esophagus: a meta-analysis and systematic review.
        Clin Gastroenterol Hepatol. 2013; 11 (e1562): 1562-1570
        • Huang D.
        • Swanson E.A.
        • Lin C.P.
        • et al.
        Optical coherence tomography.
        Science. 1991; 254: 1178-1181
        • Carignan C.S.
        • Yagi Y.
        Optical endomicroscopy and the road to real-time, in vivo pathology: present and future.
        Diagn Pathol. 2012; 7: 98
        • Suter M.J.
        • Gora M.J.
        • Lauwers G.Y.
        • et al.
        Esophageal-guided biopsy with volumetric laser endomicroscopy and laser cautery marking: a pilot clinical study.
        Gastrointest Endosc. 2014; 79: 886-896
        • Vakoc B.J.
        • Shishko M.
        • Yun S.H.
        • et al.
        Comprehensive esophageal microscopy by using optical frequency-domain imaging (with video).
        Gastrointest Endosc. 2007; 65: 898-905
        • Bouma B.E.
        • Tearney G.J.
        • Compton C.C.
        • et al.
        High-resolution imaging of the human esophagus and stomach in vivo using optical coherence tomography.
        Gastrointest Endosc. 2000; 51: 467-474
        • Kang D.K.
        • Suter M.J.
        • Boudoux C.
        • et al.
        Co-registered spectrally encoded confocal microscopy and optical frequency domain imaging system.
        J Microscopy. 2010; 239: 87-91
        • Evans J.A.
        • Bouma B.E.
        • Bressner J.
        • et al.
        Identifying intestinal metaplasia at the squamocolumnar junction by using optical coherence tomography.
        Gastrointest Endosc. 2007; 65: 50-56
        • Poneros J.M.
        • Brand S.
        • Bouma B.E.
        • et al.
        Diagnosis of specialized intestinal metaplasia by optical coherence tomography.
        Gastroenterology. 2001; 120: 7-12
        • Evans J.A.
        • Poneros J.M.
        • Bouma B.E.
        • et al.
        Optical coherence tomography to identify intramucosal carcinoma and high-grade dysplasia in Barrett's esophagus.
        Clin Gastroenterol Hepatol. 2006; 4: 38-43
        • Wolfsen H.C.
        • Wallace M.B.
        Reconsidering Barrett's esophagus: practical applications of biophotonics.
        Gastroenterology. 2008; 134: 382-385
        • Subramanian V.
        • Ragunath K.
        Advanced endoscopic imaging: a review of commercially available technologies.
        Clin Gastroenterol Hepatol. 2014; 12 (e361): 368-376
        • Sharma P.
        • Hawes R.H.
        • Bansal A.
        • et al.
        Standard endoscopy with random biopsies versus narrow band imaging targeted biopsies in Barrett's oesophagus: a prospective, international, randomised controlled trial.
        Gut. 2013; 62: 15-21
        • Sharma P.
        • Meining A.R.
        • Coron E.
        • et al.
        Real-time increased detection of neoplastic tissue in Barrett's esophagus with probe-based confocal laser endomicroscopy: final results of an international multicenter, prospective, randomized, controlled trial.
        Gastrointest Endosc. 2011; 74: 465-472
        • Canto M.I.
        • Anandasabapathy S.
        • Brugge W.
        • et al.
        In vivo endomicroscopy improves detection of Barrett's esophagus-related neoplasia: a multicenter international randomized controlled trial (with video).
        Gastrointest Endosc. 2014; 79: 211-221
        • Qi X.
        • Sivak Jr., M.V.
        • Rollins A.M.
        Optical coherence tomography for gastrointestinal endoscopy.
        in: Drexler W. Fujimoto J.G. Optical coherence tomography technology and applications. Springer, New York, NY2008: 1047-1077
        • Bouma B.E.
        • Yun S.H.
        • Vakoc B.J.
        • et al.
        Fourier-domain optical coherence tomography: recent advances toward clinical utility.
        Curr Opin Biotechnol. 2009; 20: 111-118
        • Yun S.H.
        • Tearney G.J.
        • Vakoc B.J.
        • et al.
        Comprehensive volumetric optical microscopy in vivo.
        Nature Med. 2006; 12: 1429-1433
        • Yun S.
        • Tearney G.
        • de Boer J.
        • et al.
        High-speed optical frequency-domain imaging.
        Opt Express. 2003; 11: 2953-2963
        • Sergeev A.
        • Gelikonov V.
        • Gelikonov G.
        • et al.
        In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa.
        Opt Express. 1997; 1: 432-440
        • Jackle S.
        • Gladkova N.
        • Feldchtein F.
        • et al.
        In vivo endoscopic optical coherence tomography of the human gastrointestinal tract—toward optical biopsy.
        Endoscopy. 2000; 32: 743-749
        • Li X.D.
        • Boppart S.A.
        • Van Dam J.
        • et al.
        Optical coherence tomography: advanced technology for the endoscopic imaging of Barrett's esophagus.
        Endoscopy. 2000; 32: 921-930
        • Sivak Jr., M.V.
        • Kobayashi K.
        • Izatt J.A.
        • et al.
        High-resolution endoscopic imaging of the GI tract using optical coherence tomography.
        Gastrointest Endosc. 2000; 51: 474-479
        • Yang V.X.
        • Gordon M.
        • Tang S.J.
        • et al.
        High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts.
        Opt Express. 2003; 11: 2416-2424
        • Poneros J.M.
        • Nishioka N.S.
        Diagnosis of Barrett's esophagus using optical coherence tomography.
        Gastrointest Endosc Clin N Am. 2003; 13: 309-323
        • Isenberg G.
        • Sivak Jr., M.V.
        • Chak A.
        • et al.
        Accuracy of endoscopic optical coherence tomography in the detection of dysplasia in Barrett's esophagus: a prospective, double-blinded study.
        Gastrointest Endosc. 2005; 62: 825-831
        • Kang D.
        • Yoo H.
        • Jillella P.
        • et al.
        Comprehensive volumetric confocal microscopy with adaptive focusing.
        Biomed Opt Express. 2011; 2: 1412-1422
        • Suter M.J.
        • Vakoc B.J.
        • Yachimski P.S.
        • et al.
        Comprehensive microscopy of the esophagus in human patients with optical frequency domain imaging.
        Gastrointest Endosc. 2008; 68: 745-753
        • Sauk J.
        • Coron E.
        • Kava L.
        • et al.
        Interobserver agreement for the detection of Barrett's esophagus with optical frequency domain imaging.
        Dig Dis Sci. 2013; 58: 2261-2265
        • Savoy A.D.
        • Wallace M.B.
        EUS in the management of the patient with dysplasia in Barrett's esophagus.
        J Clin Gastroenterol. 2005; 39: 263-267
        • Pouw R.E.
        • van Vilsteren F.G.
        • Peters F.P.
        • et al.
        Randomized trial on endoscopic resection-cap versus multiband mucosectomy for piecemeal endoscopic resection of early Barrett's neoplasia.
        Gastrointest Endosc. 2011; 74: 35-43
        • Gill K.R.
        • Wolfsen H.C.
        • Preyer N.W.
        • et al.
        Pilot study on light dosimetry variables for photodynamic therapy of Barrett's esophagus with high-grade dysplasia.
        Clin Cancer Res. 2009; 15: 1830-1836
        • Gill K.R.
        • Ghabril M.S.
        • Jamil L.H.
        • et al.
        Variation in Barrett's esophageal wall thickness: Is it associated with histology or segment length?.
        J Clin Gastroenterol. 2010; 44: 411-415
        • Leggett C.L.
        • Gorospe E.
        • Owens V.L.
        • et al.
        Volumetric laser endomicroscopy detects subsquamous Barrett's adenocarcinoma.
        Am J Gastroenterol. 2014; 109: 298-299
        • Peery A.F.
        • Shaheen N.J.
        Optical coherence tomography in Barrett's esophagus: the road to clinical utility.
        Gastrointest Endosc. 2010; 71: 231-234
        • Wallace M.B.
        New technologies for examination of the esophagus: Are they really better than white-light endoscopy?.
        Gastroenterol Hepatol. 2012; 8: 113-116