Deep learning for wireless capsule endoscopy: a systematic review and meta-analysis

Published:April 22, 2020DOI:https://doi.org/10.1016/j.gie.2020.04.039

      Background and Aims

      Deep learning is an innovative algorithm based on neural networks. Wireless capsule endoscopy (WCE) is considered the criterion standard for detecting small-bowel diseases. Manual examination of WCE is time-consuming and can benefit from automatic detection using artificial intelligence (AI). We aimed to perform a systematic review of the current literature pertaining to deep learning implementation in WCE.

      Methods

      We conducted a search in PubMed for all original publications on the subject of deep learning applications in WCE published between January 1, 2016 and December 15, 2019. Evaluation of the risk of bias was performed using tailored Quality Assessment of Diagnostic Accuracy Studies-2. Pooled sensitivity and specificity were calculated. Summary receiver operating characteristic curves were plotted.

      Results

      Of the 45 studies retrieved, 19 studies were included. All studies were retrospective. Deep learning applications for WCE included detection of ulcers, polyps, celiac disease, bleeding, and hookworm. Detection accuracy was above 90% for most studies and diseases. Pooled sensitivity and specificity for ulcer detection were .95 (95% confidence interval [CI], .89-.98) and .94 (95% CI, .90-.96), respectively. Pooled sensitivity and specificity for bleeding or bleeding source were .98 (95% CI, .96-.99) and .99 (95% CI, .97-.99), respectively.

      Conclusions

      Deep learning has achieved excellent performance for the detection of a range of diseases in WCE. Notwithstanding, current research is based on retrospective studies with a high risk of bias. Thus, future prospective, multicenter studies are necessary for this technology to be implemented in the clinical use of WCE.

      Abbreviations:

      AI (artificial intelligence), CCE (colorectal capsule endoscopy), CCC (convolutional neural network), WCE (wireless capsule endoscopy)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Gastrointestinal Endoscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kopylov U.
        • Seidman E.G.
        Diagnostic modalities for the evaluation of small bowel disorders.
        Curr Opin Gastroenterol. 2015; 31: 111-117
        • Kopylov U.
        • Seidman E.G.
        Clinical applications of small bowel capsule endoscopy.
        Clin Exp Gastroenterol. 2013; 6: 129
        • Eliakim R.
        Video capsule endoscopy of the small bowel.
        Curr Opin Gastroenterol. 2008; 24: 159-163
        • Pennazio M.
        • Spada C.
        • Eliakim R.
        • et al.
        Small-bowel capsule endoscopy and device-assisted enteroscopy for diagnosis and treatment of small-bowel disorders: European Society of Gastrointestinal Endoscopy (ESGE) clinical guideline.
        Endoscopy. 2015; 47: 352-386
        • Mishkin D.S.
        • Chuttani R.
        • Croffie J.
        • et al.
        ASGE technology status evaluation report: wireless capsule endoscopy.
        Gastrointest Endosc. 2006; 63: 539-545
        • Koulaouzidis A.
        • Iakovidis D.K.
        • Karargyris A.
        • et al.
        Optimizing lesion detection in small-bowel capsule endoscopy: from present problems to future solutions.
        Exp Rev Gastroenterol Hepatol. 2015; 9: 217-235
        • Hricak H.
        2016 New horizons lecture: beyond imaging—radiology of tomorrow.
        Radiology. 2018; 286: 764-775
        • Hosny A.
        • Parmar C.
        • Quackenbush J.
        • et al.
        Artificial intelligence in radiology.
        Nature Rev Cancer. 2018; 18: 500
        • LeCun Y.
        • Bengio Y.
        • Hinton G.
        Deep learning.
        Nature. 2015; 521: 436
        • Soffer S.
        • Ben-Cohen A.
        • Shimon O.
        • et al.
        Convolutional neural networks for radiologic images: a radiologist’s guide.
        Radiology. 2019; 290: 590-606
        • Chartrand G.
        • Cheng P.M.
        • Vorontsov E.
        • et al.
        Deep learning: a primer for radiologists.
        Radiographics. 2017; 37: 2113-2131
        • Litjens G.
        • Kooi T.
        • Bejnordi B.E.
        • et al.
        A survey on deep learning in medical image analysis.
        Med Image Anal. 2017; 42: 60-88
        • Meyer P.
        • Noblet V.
        • Mazzara C.
        • et al.
        Survey on deep learning for radiotherapy.
        Comput Biol Med. 2018; 98: 126-146
        • Watson D.S.
        • Krutzinna J.
        • Bruce I.N.
        • et al.
        Clinical applications of machine learning algorithms: beyond the black box.
        BMJ. 2019; 364: l886
        • Barash Y.
        • Klang E.
        Automated quantitative assessment of oncological disease progression using deep learning.
        Ann Transl Med. 2019; 7: S379
        • Zebra Medical Vision
        Transforming patient care with the power of AI.
        2019 (Available at: https://www.zebra-med.com. Accessed June 6, 2020)
        • Aidoc
        Clinically proven radiology AI.
        2019 (Available at: https://www.zebra-med.com. Accessed June 6, 2020)
      1. Microsoft. Project InnerEye—medical imaging AI to empower clinicians. Available at: https://www.zebra-med.com. Accessed June 6, 2020

        • Powles J.
        • Hodson H.
        Google DeepMind and healthcare in an age of algorithms.
        Health Technol. 2017; 7: 351-367
        • Chen Y.
        • Argentinis J.E.
        • Weber G.
        IBM Watson: how cognitive computing can be applied to big data challenges in life sciences research.
        Clin Therap. 2016; 38: 688-701
        • Konda V.J.A.
        Computer-aided diagnosis: further eliminating the human factor in endoscopy?.
        Endoscopy. 2017; 49: 734-735
        • Le Berre C.
        • Sandborn W.J.
        • Aridhi S.
        • et al.
        Application of artificial intelligence to gastroenterology and hepatology.
        Gastroenterology. 2019; (;158:76-94.e2)
        • Cai S.L.
        • Li B.
        • Tan W.M.
        • et al.
        Using a deep learning system in endoscopy for screening of early esophageal squamous cell carcinoma (with video).
        Gastrointest Endosc. 2019; 90: 745-753
        • Vinsard D.G.
        • Mori Y.
        • Misawa M.
        • et al.
        Quality assurance of computer-aided detection and diagnosis in colonoscopy.
        Gastrointest Endosc. 2019; 90: 55-63
        • Ahmad O.F.
        • Soares A.S.
        • Mazomenos E.
        • et al.
        Artificial intelligence and computer-aided diagnosis in colonoscopy: current evidence and future directions.
        Lancet Gastroenterol Hepatol. 2019; 4: 71-80
        • Moher D.
        • Liberati A.
        • Tetzlaff J.
        • Altman D.G.
        Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.
        Ann Intern Med. 2009; 151: 264-269
        • Whiting P.F.
        • Rutjes A.W.
        • Westwood M.E.
        • et al.
        QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies.
        Ann Intern Med. 2011; 155: 529-536
        • Fleuren L.M.
        • Klausch T.L.T.
        • Zwager C.L.
        • et al.
        Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy.
        Intensive Care Med. 2020; 46: 383-400
        • Kwong M.T.
        • Colopy G.W.
        • Weber A.M.
        • et al.
        The efficacy and effectiveness of machine learning for weaning in mechanically ventilated patients at the intensive care unit: a systematic review.
        Bio-Design Manufact. 2019; 2: 31-40
        • Doebler P.
        • Holling H.
        Meta-analysis of diagnostic accuracy with mada.
        R Packag. 2015; 1: 15
        • Nyaga V.
        • Arbyn M.
        • Aerts M.
        METAPROP: Stata module to perform fixed and random effects meta-analysis of proportions.
        2017 (Available at: https://www.zebra-med.com/.Accessed June 6, 2020)
        • Reitsma J.B.
        • Glas A.S.
        • Rutjes A.W.
        • et al.
        Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews.
        J Clin Epidemiol. 2005; 58: 982-990
        • Ioannidis J.P.
        • Patsopoulos N.A.
        • Evangelou E.
        Uncertainty in heterogeneity estimates in meta-analyses.
        BMJ. 2007; 335: 914-916
        • Fan S.
        • Xu L.
        • Fan Y.
        • et al.
        Computer-aided detection of small intestinal ulcer and erosion in wireless capsule endoscopy images.
        Phys Med Biol. 2018; 63: 165001
        • Alaskar H.
        • Hussain A.
        • Al-Aseem N.
        • et al.
        Application of convolutional neural networks for automated ulcer detection in wireless capsule endoscopy images.
        Sensors. 2019; 19: 1265
        • Aoki T.
        • Yamada A.
        • Aoyama K.
        • et al.
        Automatic detection of erosions and ulcerations in wireless capsule endoscopy images based on a deep convolutional neural network.
        Gastrointest Endosc. 2019; 89: 357-363
        • Wang S.
        • Xing Y.
        • Zhang L.
        Deep convolutional neural network for ulcer recognition in wireless capsule endoscopy: experimental feasibility and optimization.
        2019. 2019: 7546215
        • Wang S.
        • Xing Y.
        • Zhang L.
        • et al.
        A systematic evaluation and optimization of automatic detection of ulcers in wireless capsule endoscopy on a large dataset using deep convolutional neural networks.
        Phys Med Biol. 2019; 64: 235014
        • Klang E.
        • Barash Y.
        • Margalit R.Y.
        • et al.
        Deep learning algorithms for automated detection of Crohn's disease ulcers by video capsule endoscopy.
        Gastrointest Endosc. 2020; 91: 606-613
        • Aoki T.
        • Yamada A.
        Clinical usefulness of a deep learning-based system as the first screening on small-bowel capsule endoscopy reading.
        Dig Endosc. 2019; (32:585-91)
        • Jia X.
        • Meng M.Q.-H.
        Gastrointestinal bleeding detection in wireless capsule endoscopy images using handcrafted and CNN features.
        2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2017: 3154-3157
        • Jia X.
        • Meng M.Q.-H.
        A deep convolutional neural network for bleeding detection in wireless capsule endoscopy images.
        2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2016: 639-642
        • Leenhardt R.
        • Vasseur P.
        • Li C.
        • et al.
        A neural network algorithm for detection of GI angiectasia during small-bowel capsule endoscopy.
        Gastrointest Endosc. 2019; 89: 189-194
        • Eliakim R.
        • Fischer D.
        • Suissa A.
        • et al.
        Wireless capsule video endoscopy is a superior diagnostic tool in comparison to barium follow-through and computerized tomography in patients with suspected Crohn's disease.
        Eur J Gastroenterol Hepatol. 2003; 15: 363-367
        • Eliakim R.
        Video capsule endoscopy of the small bowel.
        Curr Opin Gastroenterol. 2013; 29: 133-139
        • Kopylov U.
        • Ben-Horin S.
        • Seidman E.G.
        • etal
        Video capsule endoscopy of the small bowel for monitoring of Crohn's disease.
        Inflamm Bowel Dis. 2015; 21: 2726-2735
        • Lee N.M.
        • Eisen G.M.
        10 years of capsule endoscopy: an update.
        Exp Rev Gastroenterol Hepatol. 2010; 4: 503-512
        • Rondonotti E.
        • Soncini M.
        • Girelli C.M.
        • et al.
        Can we improve the detection rate and interobserver agreement in capsule endoscopy?.
        Dig Liver Dis. 2012; 44: 1006-1011
        • Zheng Y.
        • Hawkins L.
        • Wolff J.
        • et al.
        Detection of lesions during capsule endoscopy: physician performance is disappointing.
        Am J Gastroenterol. 2012; 107: 554
        • Ding Z.
        • Shi H.
        • Zhang H.
        • et al.
        Gastroenterologist-level identification of small bowel diseases and normal variants by capsule endoscopy using a deep-learning model.
        Gastroenterology. 2019; 157: 1044-1054.e5
        • Blanes-Vidal V.
        • Baatrup G.
        • Nadimi E.S.
        Addressing priority challenges in the detection and assessment of colorectal polyps from capsule endoscopy and colonoscopy in colorectal cancer screening using machine learning.
        Acta Oncol. 2019; 58: S29-S36
        • Eliakim R.
        • Fireman Z.
        • Gralnek I.
        • et al.
        Evaluation of the PillCam Colon capsule in the detection of colonic pathology: results of the first multicenter, prospective, comparative study.
        Endoscopy. 2006; 38: 963-970
        • Van Gossum A.
        • Munoz-Navas M.
        • Fernandez-Urien I.
        • et al.
        Capsule endoscopy versus colonoscopy for the detection of polyps and cancer.
        N Engl J Med. 2009; 361: 264-270
        • Nowak T.
        A global perspective on capsule endoscopy.
        Ann Translat Med. 2017; 5:422
        • Fu Y.
        • Zhang W.
        • Mandal M.
        • et al.
        Computer-aided bleeding detection in WCE video.
        IEEE J Biomed Health Inform. 2013; 18: 636-642
        • Karargyris A.
        • Bourbakis N.
        Detection of small bowel polyps and ulcers in wireless capsule endoscopy videos.
        IEEE Trans Biomed Eng. 2011; 58: 2777-2786
        • Li B.
        • Meng M.Q.-H.
        Tumor recognition in wireless capsule endoscopy images using textural features and SVM-based feature selection.
        IEEE Trans Inform Technol Biomed. 2012; 16: 323-329
        • Yuan Y.
        • Li B.
        • Meng M.Q.-H.
        Bleeding frame and region detection in the wireless capsule endoscopy video.
        IEEE J Biomedical Health Inform. 2015; 20: 624-630
        • Han S.
        • Fahed J.
        • Cave D.R.
        Suspected blood indicator to identify active gastrointestinal bleeding: a prospective validation.
        Gastroenterol Res. 2018; 11: 106
        • Saurin J.-C.
        • Lapalus M.G.
        • Cholet F.
        • et al.
        Can we shorten the small-bowel capsule reading time with the “Quick-view” image detection system?.
        Dig Liver Dis. 2012; 44: 477-481
        • Saurin J.C.
        • Jacob P.
        • Heyries L.
        • et al.
        Multicenter prospective evaluation of the express view reading mode for small-bowel capsule endoscopy studies.
        Endosc Int Open. 2018; 6: E616-E621
        • Seguí S.
        • Drozdzal M.
        • Pascual G.
        • et al.
        Generic feature learning for wireless capsule endoscopy analysis.
        Comput Biol Med. 2016; 79: 163-172
        • Iakovidis D.K.
        • Georgakopoulos S.V.
        • Vasilakakis M.
        • et al.
        Detecting and locating gastrointestinal anomalies using deep learning and iterative cluster unification.
        IEEE Trans Med Imag. 2018; 37: 2196-2210
        • He J.-Y.
        • Wu X.
        • Jiang Y.-G.
        • et al.
        Hookworm detection in wireless capsule endoscopy images with deep learning.
        IEEE Trans Image Proc. 2018; 27: 2379-2392
        • Yuan Y.
        • Meng M.Q.H.
        Deep learning for polyp recognition in wireless capsule endoscopy images.
        Med Phys. 2017; 44: 1379-1389
        • Schmidhuber J.
        Deep learning in neural networks: an overview.
        Neural Netw. 2015; 61: 85-117
        • Klang E.
        Deep learning and medical imaging.
        J Thorac Dis. 2018; 10: 1325-1328
        • Koulaouzidis A.
        • Iakovidis D.K.
        • Yung D.E.
        • et al.
        KID Project: an internet-based digital video atlas of capsule endoscopy for research purposes.
        Endosc Int Open. 2017; 5: E477-E483
        • Krizhevsky A.
        • Sutskever I.
        • Hinton G.E.
        Imagenet classification with deep convolutional neural networks.
        Advances in neural information processing systems. 2012; : 1097-1105
      2. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556. 2014.

        • Szegedy C.
        • Ioffe S.
        • Vanhoucke V.
        • et al.
        Inception-v4, inception-resnet and the impact of residual connections on learning.
        Thirty-First AAAI Conference on Artificial Intelligence, 2017
        • He K.
        • Zhang X.
        • Ren S.
        • et al.
        Deep residual learning for image recognition.
        Proceedings of the IEEE conference on computer vision and pattern recognition. 2016; : 770-778
      3. Iandola F, Moskewicz M, Karayev S, et al. Densenet: implementing efficient convnet descriptor pyramids. 2014. arXiv:1404.1869v1.

        • Esteva A.
        • Robicquet A.
        • Ramsundar B.
        • et al.
        A guide to deep learning in healthcare.
        Nat Med. 2019; 25: 24
        • Aoki T.
        • Yamada A.
        • Kato Y.
        • et al.
        Automatic detection of blood content in capsule endoscopy images based on a deep convolutional neural network.
        J Gastroenterol Hepatol. 2020; 35: 1196-1200
        • Tsuboi A.
        • Oka S.
        Artificial intelligence using a convolutional neural network for automatic detection of small-bowel angioectasia in capsule endoscopy images.
        Dig Endosc. 2020; 32: 382-390
        • Zhou T.
        • Han G.
        • Li B.N.
        • et al.
        Quantitative analysis of patients with celiac disease by video capsule endoscopy: a deep learning method.
        Comput Biol Med. 2017; 85: 1-6