Advertisement

Robotics in therapeutic endoscopy (with video)

      Since its inception, endoscopy has evolved from a solely diagnostic procedure to an expanding therapeutic field within gastroenterology. The incorporation of robotics in gastroenterology initially addressed shortcomings of flexible endoscopes in natural orifice transluminal endoscopy. Developing therapeutic endoscopic robotic platforms now offer operators improved ergonomics, visualization, dexterity, precision, and control and the possibility of increasing proficiency and standardization of complex endoscopic procedures including endoscopic submucosal dissection, endoscopic full-thickness resection, and endoscopic suturing. The following review discusses the history, potential applications, and tools currently available and in development for robotics in therapeutic endoscopy.

      Graphical abstract

      Abbreviations:

      DCE (double-channel endoscope), DOF (degree of freedom), EASE (Endoluminal Assistant for Surgical Endoscopy), EFTR (endoscopic full-thickness resection), ESD (endoscopic submucosal dissection), FASTER (Flexible Auxiliary Single-arm Transluminal Endoscopic Robot), FDA (U.S. Food and Drug Administration), NOTES (natural orifice transluminal endoscopic surgery), STER (submucosal tunneling endoscopic resection), STRAS (Single-access Transluminal Robotic Assistant for Surgeons), WCE (wireless capsule endoscopy)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Gastrointestinal Endoscopy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • De Groen P.C.
        History of the endoscope [scanning our past].
        Proc IEEE. 2017; 105: 1987-1995
        • Leal Ghezzi T.
        • Campos Corleta O.
        30 Years of robotic surgery.
        World J Surg. 2016; 40: 2550-2557
        • Oleynikov D.
        Robotic surgery.
        Surg Clin North Am. 2008; 88 (viii): 1121-1130
        • Peters B.S.
        • Armijo P.R.
        • Krause C.
        • et al.
        Review of emerging surgical robotic technology.
        Surg Endosc. 2018; 32: 1636-1655
        • Ashrafian H.
        • Clancy O.
        • Grover V.
        • et al.
        The evolution of robotic surgery: surgical and anaesthetic aspects.
        Br J Anaesth. 2017; 119: i72-i84
        • Bardaro S.J.
        • Swanstrom L.
        Development of advanced endoscopes for natural orifice transluminal endoscopic surgery (NOTES).
        Minim Invasive Ther Allied Technol. 2006; 15: 378-383
        • Pearl J.P.
        • Ponsky J.L.
        Natural orifice translumenal endoscopic surgery: a critical review.
        J Gastrointest Surg. 2008; 12: 1293-1300
        • Atallah S.
        • Hodges A.
        • Larach S.W.
        Direct target NOTES: prospective applications for next generation robotic platforms.
        Tech Coloproctol. 2018; 22: 363-371
        • Zuo S.
        • Wang S.
        Current and emerging robotic assisted intervention for NOTES.
        Expert Rev Med Devices. 2016; 13: 1095-1105
        • Karimyan V.
        • Sodergren M.
        • Clark J.
        • et al.
        Navigation systems and platforms in natural orifice translumenal endoscopic surgery (NOTES).
        Int J Surg. 2009; 7: 297-304
        • Chiu P.W.
        Novel endoscopic therapeutics for early gastric cancer.
        Clin Gastroenterol Hepatol. 2014; 12: 120-125
        • Draganov P.V.
        • Wang A.Y.
        • Othman M.O.
        • et al.
        AGA Institute clinical practice update: endoscopic submucosal dissection in the United States.
        Clin Gastroenterol Hepatol. 2019; 17: 16-25
        • Gotoda T.
        A large endoscopic resection by endoscopic submucosal dissection procedure for early gastric cancer.
        Clin Gastroenterol Hepatol. 2005; 3: S71-S73
        • Tajika M.
        • Niwa Y.
        • Bhatia V.
        • et al.
        Comparison of endoscopic submucosal dissection and endoscopic mucosal resection for large colorectal tumors.
        Eur J Gastroenterol Hepatol. 2011; 23: 1042-1049
        • Arezzo A.
        • Passera R.
        • Marchese N.
        • et al.
        Systematic review and meta-analysis of endoscopic submucosal dissection vs endoscopic mucosal resection for colorectal lesions.
        United Eur Gastroenterol J. 2016; 4: 18-29
        • Turiani Hourneaux de Moura D.
        • Aihara H.
        • Jirapinyo P.
        • et al.
        Robot-assisted endoscopic submucosal dissection versus conventional ESD for colorectal lesions: outcomes of a randomized pilot study in endoscopists without prior ESD experience (with video).
        Gastrointest Endosc. 2019; 90: 290-298
        • Marlicz W.
        • Ren X.
        • Robertson A.
        • et al.
        Frontiers of robotic gastroscopy: a comprehensive review of robotic gastroscopes and technologies.
        Cancers (Basel). 2020; 12: 2775
        • Yeung B.P.
        • Chiu P.W.
        Application of robotics in gastrointestinal endoscopy: a review.
        World J Gastroenterol. 2016; 22: 1811-1825
        • Phee S.J.
        • Reddy N.
        • Chiu P.W.
        • et al.
        Robot-assisted endoscopic submucosal dissection is effective in treating patients with early-stage gastric neoplasia.
        Clin Gastroenterol Hepatol. 2012; 10: 1117-1121
        • Lomanto D.
        • Wijerathne S.
        • Ho L.K.
        • et al.
        Flexible endoscopic robot.
        Minim Invasive Ther Allied Technol. 2015; 24: 37-44
        • Wang Z.
        • Phee S.J.
        • Lomanto D.
        • et al.
        Endoscopic submucosal dissection of gastric lesions by using a master and slave transluminal endoscopic robot: an animal survival study.
        Endoscopy. 2012; 44: 690-694
        • Chiu P.W.
        • Phee S.J.
        • Bhandari P.
        • et al.
        Enhancing proficiency in performing endoscopic submucosal dissection (ESD) by using a prototype robotic endoscope.
        Endosc Int Open. 2015; 3: E439-E442
        • Zorn L.
        • Nageotte F.
        • Zanne P.
        • et al.
        A novel telemanipulated robotic assistant for surgical endoscopy: preclinical application to ESD.
        IEEE Trans Biomed Eng. 2018; 65: 797-808
        • Ikeda K.
        • Sumiyama K.
        • Tajiri H.
        • et al.
        Evaluation of a new multitasking platform for endoscopic full-thickness resection.
        Gastrointest Endosc. 2011; 73: 117-122
        • Rajan E.
        • Wong Kee
        • Song L.M.
        Endoscopic full thickness resection.
        Gastroenterology. 2018; 154: 1925-1937
        • Zwager L.W.
        • Bastiaansen B.A.J.
        • Bronzwaer M.E.S.
        • et al.
        Endoscopic full-thickness resection (eFTR) of colorectal lesions: results from the Dutch colorectal eFTR registry.
        Endoscopy. 2020; 52: 1014-1023
        • Cai M.Y.
        • Martin Carreras-Presas F.
        • Zhou P.H.
        Endoscopic full-thickness resection for gastrointestinal submucosal tumors.
        Dig Endosc. 2018; 30: 17-24
        • Schmidt A.
        • Meier B.
        • Caca K.
        Endoscopic full-thickness resection: current status.
        World J Gastroenterol. 2015; 21: 9273-9285
        • Wang H.
        • Feng X.
        • Ye S.
        • et al.
        A comparison of the efficacy and safety of endoscopic full-thickness resection and laparoscopic-assisted surgery for small gastrointestinal stromal tumors.
        Surg Endosc. 2016; 30: 3357-3361
        • Li Q.Y.
        • Meng Y.
        • Xu Y.Y.
        • et al.
        Comparison of endoscopic submucosal tunneling dissection and thoracoscopic enucleation for the treatment of esophageal submucosal tumors.
        Gastrointest Endosc. 2017; 86: 485-491
        • Chen T.
        • Lin Z.W.
        • Zhang Y.Q.
        • et al.
        Submucosal tunneling endoscopic resection vs thoracoscopic enucleation for large submucosal tumors in the esophagus and the esophagogastric junction.
        J Am Coll Surg. 2017; 225: 806-816
        • Chiu P.W.
        • Phee S.J.
        • Wang Z.
        • et al.
        Feasibility of full-thickness gastric resection using master and slave transluminal endoscopic robot and closure by Overstitch: a preclinical study.
        Surg Endosc. 2014; 28: 319-324
        • Stavropoulos S.N.
        • Modayil R.
        • Friedel D.
        Current applications of endoscopic suturing.
        World J Gastrointest Endosc. 2015; 7: 777-789
        • Law R.
        • Martin J.A.
        Endoscopic stitching: techniques and indications.
        Curr Opin Gastroenterol. 2014; 30: 457-462
        • Spaun G.O.
        • Zheng B.
        • Swanstrom L.L.
        A multitasking platform for natural orifice translumenal endoscopic surgery (NOTES): a benchtop comparison of a new device for flexible endoscopic surgery and a standard dual-channel endoscope.
        Surg Endosc. 2009; 23: 2720-2727
        • Moura D.T.H.
        • Aihara H.
        • Thompson C.C.
        Robotic-assisted surgical endoscopy: a new era for endoluminal therapies.
        VideoGIE. 2019; 4: 399-402
        • Wong J.Y.Y.
        • Ho K.Y.
        Robotics for advanced therapeutic colonoscopy.
        Clin Endosc. 2018; 51: 552-557
        • Kaan H.L.
        • Ho K.Y.
        Clinical adoption of robotics in endoscopy: challenges and solutions.
        JGH Open. 2020; 4: 790-794
        • Klibansky D.
        • Rothstein R.I.
        Robotics in endoscopy.
        Curr Opin Gastroenterol. 2012; 28: 477-482
        • Chiu P.W.Y.
        • Ho K.Y.
        • Phee S.J.
        Colonic endoscopic submucosal dissection using a novel robotic system (with video).
        Gastrointest Endosc. 2021; 93: 1172-1177
        • Phee S.J.
        • Ho K.Y.
        • Lomanto D.
        • et al.
        Natural orifice transgastric endoscopic wedge hepatic resection in an experimental model using an intuitively controlled master and slave transluminal endoscopic robot (MASTER).
        Surg Endosc. 2010; 24: 2293-2298
        • Seeliger B.
        • Swanstrom L.L.
        Robotics in flexible endoscopy: current status and future prospects.
        Curr Opin Gastroenterol. 2020; 36: 370-378
        • Mascagni P.
        • Lim S.G.
        • Fiorillo C.
        • et al.
        Democratizing endoscopic submucosal dissection: single-operator fully robotic colorectal endoscopic submucosal dissection in a pig model.
        Gastroenterology. 2019; 156: 1569-1571
        • Atallah S.
        • Sanchez A.
        • Bianchi E.
        • et al.
        Envisioning the future of colorectal surgery: preclinical assessment and detailed description of an endoluminal robotic system (ColubrisMX ELS).
        Tech Coloproctol. 2021; 25: 1199-1207
        • Berthet-Rayne P.
        • Gras G.
        • Leibrandt K.
        • et al.
        The i(2)Snake robotic platform for endoscopic surgery.
        Ann Biomed Eng. 2018; 46: 1663-1675
        • Ji R.
        • Yang J.L.
        • Yang X.X.
        • et al.
        Simplified robot-assisted endoscopic submucosal dissection for esophageal and gastric lesions: a randomized, controlled, porcine study.
        Gastrointest Endosc. 2022; 96: 140-147
        • Kume K.
        • Sakai N.
        • Ueda T.
        Development of a novel gastrointestinal endoscopic robot enabling complete remote control of all operations: endoscopic therapeutic robot system (ETRS).
        Gastroenterol Res Pract. 2019; 2019: 6909547
        • Iwasa T.
        • Nakadate R.
        • Onogi S.
        • et al.
        A new robotic-assisted flexible endoscope with single-hand control: endoscopic submucosal dissection in the ex vivo porcine stomach.
        Surg Endosc. 2018; 32: 3386-3392
        • Rao S.S.
        • Camilleri M.
        • Hasler W.L.
        • et al.
        Evaluation of gastrointestinal transit in clinical practice: position paper of the American and European Neurogastroenterology and Motility Societies.
        Neurogastroenterol Motil. 2011; 23: 8-23
        • Chander B.
        • Hanley-Williams N.
        • Deng Y.
        • et al.
        24 Versus 48-hour bravo pH monitoring.
        J Clin Gastroenterol. 2012; 46: 197-200
        • Niedermann R.
        • Wyss E.
        • Annaheim S.
        • et al.
        Prediction of human core body temperature using non-invasive measurement methods.
        Int J Biometeorol. 2014; 58: 7-15
        • Rey J.F.
        • Ogata H.
        • Hosoe N.
        • et al.
        Blinded nonrandomized comparative study of gastric examination with a magnetically guided capsule endoscope and standard videoendoscope.
        Gastrointest Endosc. 2012; 75: 373-381
        • Swain P.
        • Toor A.
        • Volke F.
        • et al.
        Remote magnetic manipulation of a wireless capsule endoscope in the esophagus and stomach of humans (with videos).
        Gastrointest Endosc. 2010; 71: 1290-1293
        • De Falco I.
        • Tortora G.
        • Dario P.
        • et al.
        An integrated system for wireless capsule endoscopy in a liquid-distended stomach.
        IEEE Trans Biomed Eng. 2014; 61: 794-804
        • Tortora G.
        • Valdastri P.
        • Susilo E.
        • et al.
        Propeller-based wireless device for active capsular endoscopy in the gastric district.
        Minim Invasive Ther Allied Technol. 2009; 18: 280-290
        • Keller J.
        • Fibbe C.
        • Volke F.
        • et al.
        Inspection of the human stomach using remote-controlled capsule endoscopy: a feasibility study in healthy volunteers (with videos).
        Gastrointest Endosc. 2011; 73: 22-28
        • Quirini M.
        • Menciassi A.
        • Scapellato S.
        • et al.
        Feasibility proof of a legged locomotion capsule for the GI tract.
        Gastrointest Endosc. 2008; 67: 1153-1158
        • Wang K.
        • Yan G.
        • Ma G.
        • et al.
        An earthworm-like robotic endoscope system for human intestine: design, analysis, and experiment.
        Ann Biomed Eng. 2009; 37: 210-221
        • Yim S.
        • Gultepe E.
        • Gracias D.H.
        • et al.
        Biopsy using a magnetic capsule endoscope carrying, releasing, and retrieving untethered microgrippers.
        IEEE Trans Biomed Eng. 2014; 61: 513-521
        • Simi M.
        • Gerboni G.
        • Menciassi A.
        • et al.
        Magnetic torsion spring mechanism for a wireless biopsy capsule.
        J Med Device. 2013; 7: 1-9
        • Woods S.P.
        • Constandinou T.G.
        A compact targeted drug delivery mechanism for a next generation wireless capsule endoscope.
        J Microbiol Robot. 2016; 11: 19-34
        • Munoz F.
        • Alici G.
        • Li W.
        A review of drug delivery systems for capsule endoscopy.
        Adv Drug Deliv Rev. 2014; 71: 77-85
        • Quaglia C.
        • Tognarelli S.
        • Sinibaldi E.
        • et al.
        Wireless robotic capsule for releasing bioadhesive patches in the gastrointestinal tract.
        J Med Devices. 2014; 8: 014503
        • Tortora G.
        • Orsini B.
        • Pecile P.
        • et al.
        An ingestible capsule for the photodynamic therapy of Helicobacter pylori infection.
        IEEE/ASME Trans Mechatron. 2016; 21: 1935-1942
        • Gorlewicz J.L.
        • Battaglia S.
        • Smith B.F.
        • et al.
        Wireless insufflation of the gastrointestinal tract.
        IEEE Trans Biomed Eng. 2013; 60: 1225-1233
        • Valdastri P.
        • Quaglia C.
        • Susilo E.
        • et al.
        Wireless therapeutic endoscopic capsule: in vivo experiment.
        Endoscopy. 2008; 40: 979-982
        • Chahal D.
        • Byrne M.F.
        A primer on artificial intelligence and its application to endoscopy.
        Gastrointest Endosc. 2020; 92: 813-820