x
Filter:
Filters applied
- Graphical Abstracts
- Aoki, TomonoriRemove Aoki, Tomonori filter
- 2021 - 2023Remove 2021 - 2023 filter
Author
- Yamada, Atsuo2
- Aoyama, Taiki1
- Arai, Junya1
- Fujii, Hiroyuki1
- Fujimori, Shunji1
- Fujishiro, Mitsuhiro1
- Fujita, Minoru1
- Fukuda, Katsuyuki1
- Funabiki, Tomohiro1
- Funakoshi, Sadahiro1
- Fuyuno, Yuta1
- Gunji, Naohiko1
- Gushima, Ryosuke1
- Hayakawa, Yoku1
- Hayasaka, Junnosuke1
- Hirata, Yoshihiro1
- Ikeya, Takashi1
- Ishibashi, Rei1
- Ishii, Naoki1
- Kaise, Mitsuru1
- Kinjo, Ken1
- Kinjo, Tetsu1
- Kinjo, Yuzuru1
- Kishino, Takaaki1
Keyword
- acute lower GI bleeding1
- ALGIB1
- CI1
- confidence interval1
- Cox proportional hazard1
- CPH1
- GBDT1
- gradient-boosting decision tree1
- interventional radiology1
- inverse probability of treatment weighting1
- IPTW1
- IVR1
- machine learning1
- ML1
- odds ratio1
- OLGA1
- OLGIM1
- Operative Link on Gastritis Assessment1
- Operative Link on Gastritis-Intestinal Metaplasia Assessment1
- OR1
- packed red blood cell1
- PRBC1
- PS1
- RCT1
- SRH1
Graphical Abstracts
2 Results
- Original article Clinical endoscopyOpen Access
Timing of colonoscopy in acute lower GI bleeding: a multicenter retrospective cohort study
Gastrointestinal EndoscopyVol. 97Issue 1p89–99.e10Published online: August 2, 2022- Yasutoshi Shiratori
- Naoki Ishii
- Tomonori Aoki
- Katsumasa Kobayashi
- Atsushi Yamauchi
- Atsuo Yamada
- and others
Cited in Scopus: 1We aimed to determine the optimal timing of colonoscopy and factors that benefit patients who undergo early colonoscopy for acute lower GI bleeding. - Original article Clinical endoscopy
Machine learning–based personalized prediction of gastric cancer incidence using the endoscopic and histologic findings at the initial endoscopy
Gastrointestinal EndoscopyVol. 95Issue 5p864–872Published online: January 5, 2022- Junya Arai
- Tomonori Aoki
- Masaya Sato
- Ryota Niikura
- Nobumi Suzuki
- Rei Ishibashi
- and others
Cited in Scopus: 6Accurate risk stratification for gastric cancer is required for optimal endoscopic surveillance in patients with chronic gastritis. We aimed to develop a machine learning (ML) model that incorporates endoscopic and histologic findings for an individualized prediction of gastric cancer incidence.